EVENT DATA RECORDER
Policy Statement

WHEREAS, more accurate data gathered on highway crashes allows better understanding of crash causation and vehicle performance and enhances the ability to develop effective programs to reduce the injuries received in crashes.

WHEREAS, it has been shown that event data recorders provide benefits in monitoring the efficacy of restraint systems (airbags and seat belts) during the short period of a crash.

WHEREAS, the knowledge gained from measured crash information in event data recorders when used for reconstructing and analyzing crashes can provide future benefits in improved safety in passenger compartment design and crash avoidance systems.

WHEREAS, drawbacks of the event data recorders including reliability of the information recorded, the types of information collected, privacy issues, and ownership information could be solved by restrictions regarding access to and use of the data. Therefore, be it

RESOLVED, that the Association for the Advancement of Automotive Medicine supports the development of a worldwide uniform standard governing motor vehicle event data recorders and the use of the recorded data.

RESOLVED, that the Association for the Advancement of Automotive Medicine encourages the National Highway Safety Administration and the motor vehicle industry to implement the installation of standardized event data recording and retrieval systems into all passenger vehicles within the next 5 years.

Adopted: September, 2003
EVENT DATA RECORDERS (EDR)
BACKGROUND INFORMATION

SAFETY
EDRs have the potential to greatly improve highway safety. The degree of benefit is directly related to the number of vehicles operating with an EDR and the current infrastructure’s ability to use and assimilate these data. [2], [1].

EDR technology has potential safety applications for all classes of motor vehicles (e.g. light duty vehicles, heavy trucks and buses). [1]

Recorded data from real-world collisions are extremely useful for a variety of purposes including conducting research into various aspects of traffic safety, e.g. evaluating potential countermeasures for collision avoidance, refining occupant protection systems, and monitoring safety systems on the roadway and at roadside. [1].

EDRs may become useful tools in the effort to develop safer cars and reduce traffic-related injuries, by providing reliable data about what happens to a driver, occupants, and a vehicle during pre-crash, crash and post-crash. These data may improve crash investigation, reconstruction, and analysis methodologies. [1].

DATA COLLECTION AND USAGE
Open access to EDR data (minus personal identifiers) will benefit researchers, crash investigators, and manufacturers in improving safety on our highways. [1], [3].

Many late-model vehicles are equipped with Original Equipment Manufacturer (OEM) installed EDRs. The most comprehensive OEM data set currently available contains longitudinal delta-V recorded in 10 millisecond (ms) increments over a 300 ms time frame, and five one-second snapshots of the throttle position, brake light switch status, engine revolutions per minute (rpm), and vehicle travel speed prior to the occurrence of a recorded event. [1].

Automatic crash notification (ACN) systems integrate the on-board crash sensing and EDR technology with other electronic systems, such as global positioning systems and cellular telephones, to provide early notification of the occurrence, nature, and location of a serious collision. [1].

EDR References

